CS395T: Foundations of
Machine Learning for

Systems Researchers
Fall 2025

Lecture 7:

Model-free (Sampling) Methods
for MDPs

Problem

In practice, we usually have incomplete Sa
knowledge of environment
* Rewards?
* Probabilities?

Y
’/\x > 2| \z
O

How do we do policy optimization when A e SC
we have incomplete knowledge of Ay
environment? o

(38
@

Ay

Model-free methods

Based on sampling: determine optimal policy
from estimates of rewards and probabilities

Issues
* What are samples?
* How do we learn from a sample?
* When do we learn from samples?
* How to update policy when you get new samples?

Goalis to determine optimal policy and not to
learn full MDP, which is usually impossible

Organization

Background:
* Incremental & exponential recency-weighted averaging of

sequences

Offline method
* Collect samples and post-process them to find V/Q estimates

* Like batching in NN training

Online methods
. Boot—strapping methods: start with initial approximations for
V/Q values and update when you get sample
* Temporal-difference (TD) methods: TD(n), TD(A), SARSA, Q-learning
* Non-bootstrapping method: no initial approximation to V/Q
values needed
* Monte Carlo (RL terminology)

Background

Incremental averaging of sequence of values

* Problem: given
« Sequence of (possibly noisy) measurements of some quantity: V1, V2, Vs, ...
* Maintain a running average of measurements: V; V,, Vs, ...

Vi = W
A Vi+..+V, .
V., = L (i>1)
1
Vi+.4+Viee =1 'V
= - ¥ —— + —
1—1 1 1

1.~ 1
= (1—;)‘/;'—1 +o Vi

Target

. . 1
Vi=Vii1 4+ a;(V;=V;_1) where a; = = | Harmonic a’s
i

Error

Non-stationary problems

i =10, =0.9

y 10 samples Q% (1—04)(10_i)

weight ..

1 Harmonic a’s

sample

* Exponential recency-weighted average
* For non-stationary problems, better to give more weight to more recent measurements
* Maintain a weighted average of measurements

- W

= Vii+ a(Vi—Vi,l) where 0 < o <1 1is constant |

= aVi+a(l-a)Viii+a(l—a)*Vig+ .. +a(l —a) 2V + (1-a)" 'V

S|l =

a — 1 gives more weight to recent measurements
a — 0 gives more weight to older measurements

Stochastic Approximation Theory

* Given: continuous function f(x), non-decreasing in interval (l,h), and f(l) <0 and f(h) >0

* Intermediate value theorem: dx*: | < x* <h such that f(x*) =0

* |terative method for finding x*
* Xq=any pointininterval (l,h)

* iff(x4) <O try point to right of x; otherwise try point to left of x,
* [terative scheme: x; = X;.1 - a*f(xj.q) where o is some constant >0

* Often f cannot be measured exactly, and we can only measure g(x) = f(x) + d where d is a zero-mean noise
term

* One solution: measure g(x;) many times and take average

* Problem: you may spend a lot of effort in estimating f(x;) even if x; is far from x* oty

Recursive Algorithms
d ?

* Robbins-Monro[1951]: use iterative scheme with adaptive o;> 0

o0 [0}
Zi = Lj—1 — 0; * g(zi—1) where) ,._ o; =ooand) . 0? < 00
x; converges to *

* Stochastic gradient-descent: f is the derivative of loss function

Sampling Methods

High-level idea

Focus on policy evaluation for policy w, H = c0: need to solve linear system
VT(s) = EgP(s,m(s),8") * (R(s,m(s),s") + 7% V7 (s))
Since n is fixed, simplify notation by dropping n from equations
V(s) =g P(s,8') = (R(s,8") + 7 V(s))

We do not know P and R, but assume

P : estimate for P and row-stochastic matrix
R: estimate for R

ComputeV an estimate for state valuations, by solving linear system
V(s) =Xy P(s,s") x (R(s,s') + 7= V(s))

If P~Pand R~R,thenV=V

First attempt: offline method

Collect a multiset of samples
* At state Sa, agent takes action n(Sa) and sees what happens
Observation SARS = <StartState, Action, Observed Reward, Observed State>

* Repeat to obtain multiset of observations starting at various states
O =[SARS;, SARS,, SARS;,.....,SARS,]

Estimate V by offline processing of observations
* n(Sx) = number of times agent started in state Sx in O (assume > 0)
* n(Sx,Sy) = number of times agent ended up in state Sy when it started in state Sx

A

* P(Sx,Sy)

A

n(sx,Sy)

= ——=2 (P is a row-stochastic matrix)

n(Sx)

* R(Sx,Sy) = observed reward in any Sx —»Sy sample
* Solve linear system to find V

V(s) =

%Es/”(& s') % (R(s,s") +y % V(s'))

Drawbacks of offline method

1. We do not learn valuations until all
samples have been collected.
* Online methods: pipeline sample collection
and valuation estimation

* Exploitation: use valuations to guide where to
sample

2. Inefficient to jump around between
starting states while collecting samples

* Solution: agent should follow paths in the MDP
graph while collecting samples rather than
jumping around

 Episodes

For now, collect samples, store on disk and
process them in streaming fashion iteratively
until convergence.

Like “batching” in NN training

012

TD(0): simplest online method

Sa \“~~8§,§a E
T =0 \\(9 &
Ay \&Q .

0. A& n

n(Sa) = Ax * 7]
Sc u

* Recall: offline processing
Vis) = 5 D nls,s') = (R(s,s') + 7 V(s)

* Online updates: maintain two arrays while processing samples
* n(s) =number of times state s has been visited (initialized to 0)
+ V(s)= current estimate of V (initialized arbitrarily)|

 Newsample <Sa, Ax, R(S3,S'),S’> comesin

n(Sa)*V (Sa) + (R(Sa, S")+v*V(S"))
n(Sa)+1

V(Sa) <+ which is equivalent to

V(Sa) + V(Sa)+é(| |- V(Sa) where a=n(Sa)+1
n(Sa) <+ n(Sa)+1 TIanQg@r

Intuition: average over
multiset of samples =
weighted average over
sample set, weighted by
frequency

TD(0) program

T g =
Ay >0 \‘6’@ sa i
\\'5\2‘ \‘é .
n(Sa) = Ax \\\ sh =
v s
v
Array n:1..|S| = 0; //number of visits to states
Array V:1..|S| = arbitrary; //V estimates

while (not converged) do
for each sample <Sa,w(Sa),R(Sa,S’),S’> do {
increment n(Sa);

V(sa) « V(Sa) + m(R(Sa,S’HW*V(S’) - V(sa));
}

Tabular method: maintain table to map states to values

Comments

Convergence (Balachander, Chatterjee et al.): Given a sequence of one-hop ,
samples O, the V values computed by the TD(0) program will converge to the V
values in the fixpoint equation

Caveat: need to iterate over sample sequence O many times like in batching

Convergence: V values computed by TD(0) program will converge to V= if each
state is visited unboundedly often in O (called exploring starts).

In practice: throw away sample after it is processed and regenerate later

Boot-strapping method: V is initialized arbitrarily
Biased estimator until convergence

>
%

>
<

s S

¢
¥ A
¢

TD(1) two-hop sample: <Sg,A9,R1,51,A1,R2,5,> using policy &t
Update valuations by computing total discounted reward
V(Sa) « V(Sa)+a[Rz+7*Ry+~*V(Sc) - V(Sa)] (where a=n(Sa))

Generalize to TD(n): paths with (n-1) hops

Convergence arguments are similar to TD(0) case

00O

f
>
<

\

\
P
\

o

b e

Ax

Maintain table of Q-values rather than V values, using policy &t

Q(Sd, Az) + Q(Sd,Az)+ ax[Rz +y*Q(Sa,7(Sa)) — Q(Sd, Az)]

* Generalize to multiple hops

On-policy and off-policy methods

Terminology
* Target policy: policy you are optimizing
* Behavior policy: policy that generates actions

On-policy methods
* Target policy = Behavior policy
* “Learn about the policy you are following” (alternate policy evaluation and improvement)
* Can be less efficient than off-policy methods
* Example: TD(n), SARSA

Off-policy methods
* Behavior policy # Target policy
* “Learn about one policy while behaving according to different policy” (fuse policy evaluation & improvement)
* May find optimal policy faster than on-policy methods
* Examples: Q-learning

Good informal explanation

https://towardsdatascience.com/seven-exploration-strategies-in-reinforcement-learning-you-should-know-8eca7dec503b/

Exploratory policies

Pure exploration: pick an action at random. Does not exploit Q-value estimates.

e-greedy: use exploration € (~5-10%) fraction of time, and exploitation rest of time. For
exploration, choose action at random. Most popular method.

Boltzmann exploration: like e-greedy but uses softmax over current Q-value estimates
to select action for exploration

Pure exploitation: pick action with highest Q-value. May get stuck in local minimum.

Policy network: DNN maps state to distribution over actions, and sampler picks action

Exploration-exploitation tradeoff

Good explanation of off-policy methods

https://towardsdatascience.com/seven-exploration-strategies-in-reinforcement-learning-you-should-know-8eca7dec503b/
https://towardsdatascience.com/seven-exploration-strategies-in-reinforcement-learning-you-should-know-8eca7dec503b/
https://towardsdatascience.com/seven-exploration-strategies-in-reinforcement-learning-you-should-know-8eca7dec503b/

Q-learning

max Q(Sa,Ax)

1/ Q(5a,Ay)

of
IS
vb Ay O
@
i
1
1
1
@
e-greedy, | R
Boltzmann etc iSd Y
@)

SV S S

1
oAy ©
1

Off-policy method: needs exploratory policy
Compute Q-values like SARSA but optimize over actions like value iteration

Q(Sd,Azx) <+ Q(Sd,Azx)+ ax* Rz + v*xmazxasQ(Sa, As) — Q(Sd, Az)]
Generalize to multiple hops

Convergence of Q-learnin

https://simplecore.intel.com/ai/wp-content/uploads/sites/69/ProofQlearning.pdf
https://simplecore.intel.com/ai/wp-content/uploads/sites/69/ProofQlearning.pdf
https://simplecore.intel.com/ai/wp-content/uploads/sites/69/ProofQlearning.pdf
https://simplecore.intel.com/ai/wp-content/uploads/sites/69/ProofQlearning.pdf

Monte Carlo Method

Expectations over Trajectories

Unrolled MDP DAG for fixed &, rooted at start state SO, H=T

Each edge is labeled with probability and reward
Sum of probabilities on outgoing edges of node = 1

Trajectory: T ~ 1t path from root to a leaf

Probability of trajectory t: P(7) = product of edge probabilities

Reward of trajectory 1 : R(t) = sum of rewards on trajectory
Sum of trajectory probabilities = 1

Meaningful to talk about Er~r [PTOPertY of 7'] < = > ;x P(7)(property of 7'))

V/Q Valuations as Expectations over Trajectories:

Continuous tasks

V7™ (s) = Erupr(s) [R(T)} (where D7 (s) is set of trajectories starting at s)

S
Proof for continous tasks (episodic task proof is similar) D7 (s) \ 3 ZTND"(s) B(r)=1
P(7), R(7)
V7(s) = Zp(s,s')[R(s,s") |+~ |V™(s')|] (fixpoint equation)
=) p(s,s)[|R(s,s") [+v| > P(r)*R(r)|] (assumption about V7(s'))
s’ T~D™(8!) S
= Zp(s,s')[Z P(7) * R(s,s') |+~ Z P(7) * R(7)|] (because Z P(r)|=1)
s’ T~D™(s") T~DT(s7) T~D™(8') p(S:S,): R(S:S,)
=Y p(s,s') Y P(r)*|(R(s,8') +7xR()) &S| D7 (s)
s’ TaD7(s")
=Y Y pls,s) «B(r)£| (R(s,8) +7 % R(7)) SR
s’ T~D™(s")
= > P()*(R())
T~DT ()

Example

t=2

Bellman: V(S0) = | pOx(r0 + (plxrl + p2xr2))

= p0*xr0 + pOxpl*rl + pOxp2xr2
Trajectories: V(S0) =|p0xplx(r0+rl) + pOxp2x(r0+r2)

= p0xplxr0 + pOxpl*rl 4 pOxp2xr0 + pOxp2*r2 S2 S3
= p0xr0x (p14+p2) +p0xplsrl + pOxp2xr2 pl4+p2=1
—_——
=1

Unrolled MDP for H = 2, policy &
= p0x1r0 4+ pOxplxrl + pO*xp2xr2

Intuition: rooted DAG — set of paths starting at root
Contribution of each edge to expected reward at SO is distributed over trajectories that contain it

...............

Ry Rz Rs Ry

From a mathematical perspective, multiset of samples can be obtained by jumping randomly
between states

Practical view: more economical to follow paths in the state space, recording states and
rewards, optionally updating V/Q values on the fly

Terminal/absorbing states
* States with no outgoing edges in MDP graph
* (E.g.)win/lose states in two-person games

Episode: <Sy,A¢,R1,51,A1,R2,S0,....,51.1,A7.1,R1,S1>
* Sequence of state transitions that form a path in the MDP graph
* Sristerminal state

Monte Carlo Method

Terminal
Problem state
* MDP with absorbing/terminal states w/fixed valuations
* Policyis fixed:

Monte Carlo method

* Sample multiset of episodes
* Ateach state, sum discounted rewards from all samples starting at that state
* Atthe end, divide sum by number of episodes starting at that state
* Intuition: expected number of times path is sampled is proportional to its probability
* Non-boot-strapping method: we are propagating updates to state valuations back
from terminal states with fixed valuations

Details
* For given episode, update valuations of all intermediate nodes on path
* Implementation: propagate (discounted) rewards backwards along path

* Repeated occurrences of node on path
* First-visit MC vs. every-visit MC

Algorithm 1: First-Visit MC Prediction

Input: policy 7, positive integer num_episodes
Output: value function V' (= v, if num_episodes is large enough)
Initialize N(s) =0 for all s€ S
Initialize Returns(s) =0 for all s € S
for episode e <~ 1 to e < num-episodes do
Generate, using 7, an episode Sy, Ao, R1,51,A1,R2...,S7—1,Ar_1,Rr
G+ 0
for time step t =T — 1 to t =0 (of the episode ¢) do
GG+ R

M O nte < : rlo if state S; is not in the sequence Sy, Sy, ...,S;_1 then
Returns(S;) < Returns(S;) + Gy

N(S;) < N(Sy) +1
end

no discount):

V(s) « T;(’) forall s € S
return V

Barto & Sutton

Algorithm 2: Every-Visit MC Prediction

Input: policy 7, positive integer num_episodes
Output: value function V' (= v, if num_episodes is large enough)
Initialize N(s) =0 for all s € S
Initialize Returns(s) =0 for all s € S
for episode e <~ 1 to e < num_episodes do
Generate, using 7, an episode Sy, Ao, R1,51,A1,R2...,Sr—1,Ar_1,Rr

G0
for time step t =T — 1 to t =0 (of the episode ¢) do
G« G+ R

Returns(S;) < Returns(S;) + G
N(S;) < N(Sy) + 1
end

end
V(s) + R‘“,\}—'(‘:;(“Z foralls €S
return V.

Pros and cons of MC vs. TD

TD can learn before knowing terminal state in episode

* TD can learn after every step of episode
* MC must wait till the terminal state is known

TD can learn even if there is no terminal state in episode
* TD can learn even in continuing environments where there are no terminal states
* MC only works for episodic (terminating) environments

Bias/variance tradeoff
* Bias
* MC+ : Returns from terminating paths: unbiased estimator of V™
* TD-:TD targets Ru.q + Y*V™(S,): biased estimator (until convergence)
* Variance
* MC-: episodes may have long and variable length paths, so high variance
* TD+: short paths, so lower variance

Lecture 4: Model-Free Prediction
|—TemporaI—Difference Learning
L Random Walk Example

Random Walk Example

OO~~~ —n

start
0.8
0.6
Estimated
value 0.4 -
0.2
0 T T T T 1

Convergence

Lecture 4: Model-Free Prediction
|—TempcraI»Difference Learning
l—Random Walk Example

Random Walk: MC vs. TD

0.25

0.2

RMS error, 0:157
averaged
over states 0.1

0.05 -

Walks / Episodes

Implementation: Eligibility Traces & TD(A)

TD(0) Pseudocode with Episodes (Barto & Sutton)

Algorithm 1 Tabular TD(0) for estimating v,
Input: Policy 7 to be evaluated Parameters: Learning rate a € (0, 1]

1: for each episode: do
2: Initialize S

3: while S is not terminal: do

4: Take action A given by 7(a|S)

5: Observe R, S’

6: Update V(S) + V(S) + a[R+~V(S') — V(5)]
i S+9

8: end while

9: end for

Implementing TD(n): push vs. pull

G} = Ryp1+7Riyo.... V" Rigny1 + ’Y”’+1V"’(St+n+1)

VRS = (1—a)V(S)) + a(GP)

...............

Ri+1 Rir2 Ri+3

Pull-style implementation

Eligibility vector

| o ! i 1 |

Push-style implementation

Detail: updates actually performed using TD(0) Errors

Gf = R +7Ris2y" Resnp1 7"V (Sipnsr)
= So(y Ripip1 + VTV (Sthipr) = 7'V (Si44))
= T (Revisn £V (Stpiga) = V"(Seas)
= Z?:OViGgﬂ'

ViS) = (1=a)V*(S) +a(GY)

Eligibility vector

TD(A): get the effect of TD(n) without having to pick an n

Intuition: rather than drop old states from sliding window, use exponential recency-
weighted averaging trick

Sliding window for TD(n): Sliding window for TD(A): replacing traces version
- Mutltiply Eligibility vector by y - New hyper-parameter A

- Eligibility[Si+n+1] € 1 - Multiply Eligibility vector by yA

- Eligibility[S;] € 0 - Eligibility[St+n+1] < 1

Eligibility vector

Implementation of TD(A

Algorithm 1: TD(A) - estimating state-value function with eligibility traces.
import numpy as np

state_values = np.zeros(n_states) # initial guess = & Lue
eligibility = np.zeros(n_states)

lamb = ©.95 # the L : eighting f
state = env.reset() # start the environment, get the initial state

for t in range(n_steps):
action = policy(state)
new_state, reward, done = env.step(action)

eligibility *= lamb * gamma
eligibility[state] += 1.0

td_error = reward + gamma * state_values[new_state] - state_values[state]

state_values = state_values + alpha * td_error * eligibility
if done:

state = env.reset()
else:

state = new_state

Alistair Ries blog:
bitps://amreis.github.jo/mUreinf-

earn/2017/11/02/reinforcement-learning-eligibilitv-traces htm

https://amreis.github.io/ml/reinf-learn/2017/11/02/reinforcement-learning-eligibility-traces.html
https://amreis.github.io/ml/reinf-learn/2017/11/02/reinforcement-learning-eligibility-traces.html
https://amreis.github.io/ml/reinf-learn/2017/11/02/reinforcement-learning-eligibility-traces.html
https://amreis.github.io/ml/reinf-learn/2017/11/02/reinforcement-learning-eligibility-traces.html
https://amreis.github.io/ml/reinf-learn/2017/11/02/reinforcement-learning-eligibility-traces.html
https://amreis.github.io/ml/reinf-learn/2017/11/02/reinforcement-learning-eligibility-traces.html
https://amreis.github.io/ml/reinf-learn/2017/11/02/reinforcement-learning-eligibility-traces.html
https://amreis.github.io/ml/reinf-learn/2017/11/02/reinforcement-learning-eligibility-traces.html
https://amreis.github.io/ml/reinf-learn/2017/11/02/reinforcement-learning-eligibility-traces.html
https://amreis.github.io/ml/reinf-learn/2017/11/02/reinforcement-learning-eligibility-traces.html

Summary: concepts and keywords

Model-free methods

Deterministic vs. stochastic policies

Offline vs. online methods

Boot-strapping methods: TD(0), TD(n), TD(L), SARSA, Q-learning

Non-boot-strapping methods: Monte Carlo

Bias-variance tradeoff between TD and Monte Carlo

Eligibility traces: implementation

3
{
Y
{
!

cgesere O

e

