CS395T: Foundations of Machine Learning for Systems Researchers

Fall 2025

Lecture 7:

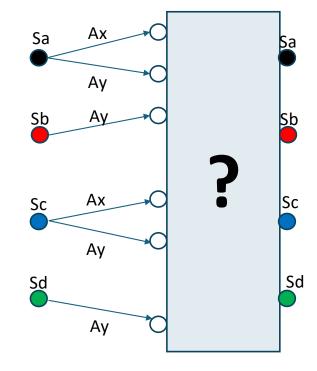
Model-free (Sampling) Methods for MDPs

Problem

In practice, we usually have incomplete knowledge of environment

- Rewards?
- Probabilities?

How do we do policy optimization when we have incomplete knowledge of environment?



Model-free methods

Based on sampling: determine optimal policy from estimates of rewards and probabilities

Issues

- What are samples?
- How do we learn from a sample?
- When do we learn from samples?
- How to update policy when you get new samples?

Goal is to determine optimal policy and not to learn full MDP, which is usually impossible

Organization

Background:

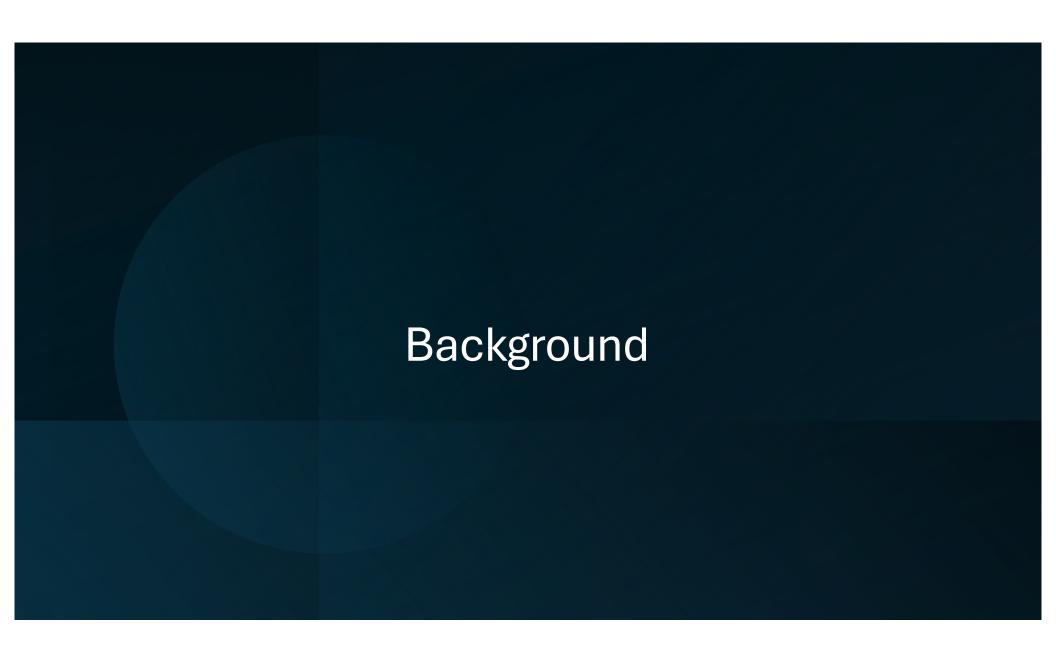
 Incremental & exponential recency-weighted averaging of sequences

Offline method

- Collect samples and post-process them to find V/Q estimates
- Like batching in NN training

Online methods

- Boot-strapping methods: start with initial approximations for V/Q values and update when you get sample
 - Temporal-difference (TD) methods: TD(n), $TD(\lambda)$, SARSA, Q-learning
- Non-bootstrapping method: no initial approximation to V/Q values needed
 - Monte Carlo (RL terminology)



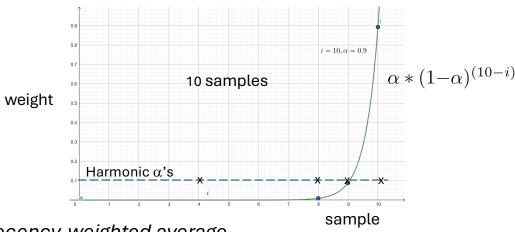
Incremental averaging of sequence of values

- Problem: given
 - Sequence of (possibly noisy) measurements of some quantity: $V_1, V_2, V_3, ...$
 - Maintain a running average of measurements: $\hat{V}_1, \hat{V}_2, \hat{V}_3, ...$

$$\hat{V}_{1} = V_{1}
\hat{V}_{i} = \frac{V_{1} + \dots + V_{i}}{i} \quad (i \ge 1)
= \frac{V_{1} + \dots + V_{i-1}}{i-1} * \frac{i-1}{i} + \frac{V_{i}}{i}
= (1 - \frac{1}{i})\hat{V}_{i-1} + \frac{1}{i} * V_{i}$$

Target
$$\hat{V}_i = \hat{V}_{i-1} + \alpha_i (\hat{V}_i - \hat{V}_{i-1}) \quad \text{where } \alpha_i = \frac{1}{i}$$
 Harmonic α 's

Non-stationary problems



- Exponential recency-weighted average
 - For non-stationary problems, better to give more weight to more recent measurements
 - · Maintain a weighted average of measurements

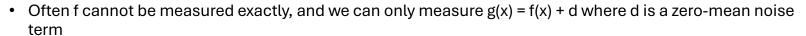
$$\hat{V}_{1} = V_{1}
\hat{V}_{i} = \hat{V}_{i-1} + \alpha(V_{i} - \hat{V}_{i-1}) \text{ where } 0 \le \alpha \le 1 \text{ is constant}
\hat{V}_{i} = \alpha V_{i} + \alpha(1 - \alpha)V_{i-1} + \alpha(1 - \alpha)^{2}V_{i-2} + \dots + \alpha(1 - \alpha)^{i-2}V_{2} + (1 - \alpha)^{i-1}V_{1}$$

 $\alpha \to 1$ gives more weight to recent measurements

 $\alpha \to 0$ gives more weight to older measurements

Stochastic Approximation Theory

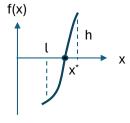
- Given: continuous function f(x), non-decreasing in interval (l,h), and f(l) < 0 and f(h) > 0
- Intermediate value theorem: $\exists x^*: l < x^* < h$ such that $f(x^*) = 0$
- Iterative method for finding x*
 - x_1 = any point in interval (l,h)
 - if $f(x_1) < 0$ try point to right of x_1 otherwise try point to left of x_1
 - Iterative scheme: $x_i = x_{i-1} \alpha^* f(x_{i-1})$ where α is some constant > 0

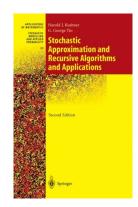


- One solution: measure $g(x_i)$ many times and take average
 - Problem: you may spend a lot of effort in estimating $f(x_i)$ even if x_i is far from x^*
- Robbins-Monro[1951]: use iterative scheme with adaptive $\alpha_i > 0$

$$x_i = x_{i-1} - \alpha_i * g(x_{i-1})$$
 where $\sum_{i=1}^{\infty} \alpha_i = \infty$ and $\sum_{i=1}^{\infty} \alpha_i^2 < \infty$ x_i converges to x^*

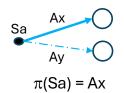
• Stochastic gradient-descent: f is the derivative of loss function





Sampling Methods

High-level idea



Focus on *policy evaluation* for policy π , $H = \infty$: need to solve linear system

$$V^{\pi}(s) = \sum_{s'} P(s, \pi(s), s') * (R(s, \pi(s), s') + \gamma * V^{\pi}(s'))$$

Since π is fixed, simplify notation by dropping π from equations

$$V(s) = \sum_{s'} P(s, s') * (R(s, s') + \gamma * V(s'))$$

We do not know P and R, but assume

 \hat{P} : estimate for P and row-stochastic matrix

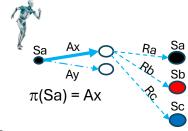
 \hat{R} : estimate for R

Compute Û, an estimate for state valuations, by solving linear system

$$\hat{V}(s) = \sum_{s'} \hat{P}(s, s') * (\hat{R}(s, s') + \gamma * \hat{V}(s'))$$

If $\hat{P} \approx P$ and $\hat{R} \approx R$, then $\hat{V} \approx V$

First attempt: offline method



Collect a multiset of samples

- At state Sa, agent takes action $\pi(Sa)$ and sees what happens
 - Observation SARS = <StartState, Action, Observed Reward, Observed State>
- Repeat to obtain multiset of observations starting at various states
 - $O = [SARS_1, SARS_2, SARS_3, \dots, SARS_n]$

Estimate V by offline processing of observations

- n(Sx) = number of times agent started in state Sx in O (assume > 0)
- n(Sx,Sy) = number of times agent ended up in state Sy when it started in state Sx
- $\hat{P}(Sx,Sy) = \frac{n(Sx,Sy)}{n(Sx)}$ (\hat{P} is a row-stochastic matrix)
- $\hat{R}(Sx,Sy) = observed reward in any Sx \rightarrow Sy sample$
- Solve linear system to find \hat{V}

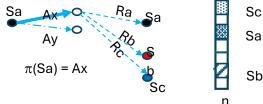
$$\hat{V}(s) = \frac{1}{n(s)} \sum_{s'} n(s, s') * (\hat{R}(s, s') + \gamma * \hat{V}(s'))$$

Drawbacks of offline method

- 1. We do not learn valuations until all samples have been collected.
 - Online methods: pipeline sample collection and valuation estimation
 - Exploitation: use valuations to guide where to sample
- 2. Inefficient to jump around between starting states while collecting samples
 - Solution: agent should follow paths in the MDP graph while collecting samples rather than jumping around
 - Episodes

For now, collect samples, store on disk and process them in streaming fashion iteratively until convergence.
Like "batching" in NN training

TD(0): simplest online method



Recall: offline processing

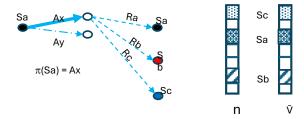
$$\hat{V}(s) = \frac{1}{n(s)} \sum_{s'} n(s, s') * (\hat{R}(s, s') + \gamma * \hat{V}(s'))$$

- Online updates: maintain two arrays while processing samples
 - n(s) = number of times state s has been visited (initialized to 0)
 - $\tilde{V}(s)$ = current estimate of V (initialized arbitrarily)|
- New sample <Sa, Ax, R(Sa,S'), S'> comes in

$$\tilde{V}(Sa) \leftarrow \frac{n(Sa)*\tilde{V}(Sa) + (R(Sa,S') + \gamma*\tilde{V}(S'))}{n(Sa) + 1} \text{ which is equivalent to } \\ \tilde{V}(Sa) \leftarrow \tilde{V}(Sa) + \frac{1}{\alpha}(\underline{R(Sa,S') + \gamma*V(S') - V(Sa)}) \text{ where } \alpha = n(Sa) + 1 \\ n(Sa) \leftarrow n(Sa) + 1$$

Intuition: average over multiset of samples = weighted average over sample set, weighted by frequency

TD(0) program



```
Array n:1..|S| = 0; //number of visits to states Array \tilde{V}:1..|S| = \text{arbitrary}; //V estimates while (not converged) do for each sample \langle \text{Sa}, \pi(\text{Sa}), \text{R}(\text{Sa}, \text{S}'), \text{S}' \rangle do { increment n(\text{Sa}); \tilde{V}(\text{Sa}) \leftarrow \tilde{V}(\text{Sa}) + \frac{1}{n(Sa)} (\text{R}(\text{Sa}, \text{S}') + \gamma * \tilde{V}(\text{S}') - \tilde{V}(\text{Sa})); }
```

Tabular method: maintain table to map states to values

Comments

Convergence (Balachander, Chatterjee et al.): Given a sequence of one-hop samples O, the \tilde{V} values computed by the TD(0) program will converge to the \hat{V} values in the fixpoint equation

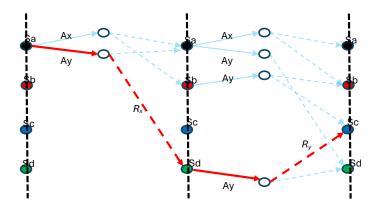
Caveat: need to iterate over sample sequence O many times like in batching

Convergence: \tilde{V} values computed by TD(0) program will converge to V^{π} if each state is visited unboundedly often in O (called *exploring starts*).

In practice: throw away sample after it is processed and regenerate later

Boot-strapping method: \tilde{V} is initialized arbitrarily Biased estimator until convergence

TD(1)

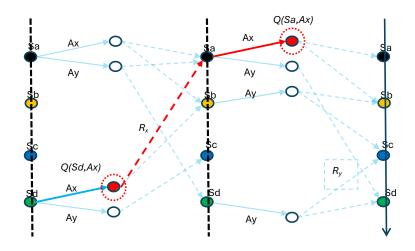


- TD(1) two-hop sample: <S₀,A₀,R₁,S₁,A₁,R₂,S₂> using policy π
- · Update valuations by computing total discounted reward

$$V(Sa) \leftarrow V(Sa) + \alpha[Rx + \gamma * Ry + \gamma^2 V(Sc) - V(Sa)] \text{ (where } \alpha = n(Sa))$$

- Generalize to TD(n): paths with (n-1) hops
- Convergence arguments are similar to TD(0) case

SARSA



- Maintain table of Q-values rather than V values, using policy $\boldsymbol{\pi}$

$$Q(Sd, Ax) \leftarrow Q(Sd, Ax) + \alpha * [Rx + \gamma * Q(Sa, \pi(Sa)) - Q(Sd, Ax)]$$

• Generalize to multiple hops

On-policy and off-policy methods

Terminology

- · Target policy: policy you are optimizing
- · Behavior policy: policy that generates actions

On-policy methods

- Target policy = Behavior policy
- "Learn about the policy you are following" (alternate policy evaluation and improvement)
- Can be less efficient than off-policy methods
- Example: TD(n), SARSA

Off-policy methods

- Behavior policy ≠ Target policy
- "Learn about one policy while behaving according to different policy" (fuse policy evaluation & improvement)
- · May find optimal policy faster than on-policy methods
- · Examples: Q-learning

Good informal explanation

Exploratory policies

Pure exploration: pick an action at random. Does not exploit Q-value estimates.

 ϵ -greedy: use exploration ϵ (~5-10%) fraction of time, and exploitation rest of time. For exploration, choose action at random. Most popular method.

Boltzmann exploration: like ϵ -greedy but uses softmax over current Q-value estimates to select action for exploration

Pure exploitation: pick action with highest Q-value. May get stuck in local minimum.

Policy network: DNN maps state to distribution over actions, and sampler picks action

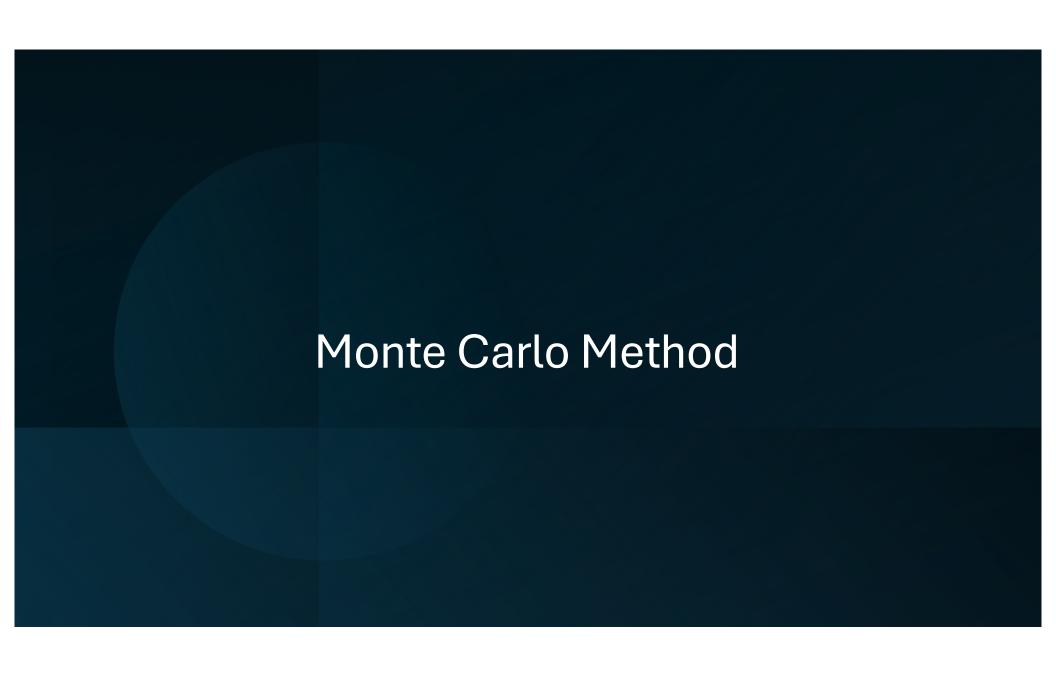
Exploration-exploitation tradeoff

Good explanation of off-policy methods

Q-learning



- Off-policy method: needs exploratory policy
- Compute Q-values like SARSA but optimize over actions like value iteration $Q(Sd,Ax) \ \leftarrow \ Q(Sd,Ax) + \alpha * [Rx + \gamma * max_{As}Q(Sa,As) Q(Sd,Ax)]$
- Generalize to multiple hops
- Convergence of O-learning



Expectations over Trajectories

Unrolled MDP DAG for fixed π , rooted at start state S0, H = T

Each edge is labeled with probability and reward Sum of probabilities on outgoing edges of node = 1

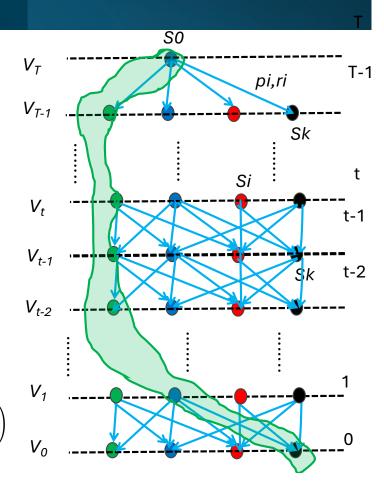
Trajectory: $\tau \sim \pi$ path from root to a leaf

Probability of trajectory τ : $\mathbb{P}(\tau)$ = product of edge probabilities

Reward of trajectory τ : R(τ) = sum of rewards on trajectory

Sum of trajectory probabilities = 1

Meaningful to talk about $\mathbb{E}_{\tau \sim \pi} \Big[\text{property of } \tau \Big] \bigg(= \sum_{\tau \sim \pi} \mathbb{P}(\tau) (\text{property of } \tau) \bigg)$

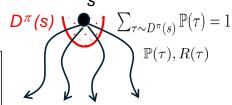


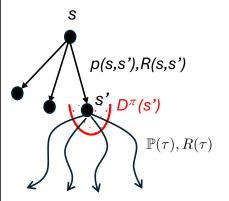
V/Q Valuations as Expectations over Trajectories: Continuous tasks

$$V^{\pi}(s) = \mathbb{E}_{\tau \sim D^{\pi}(s)} \Big[R(\tau) \Big]$$
 (where $D^{\pi}(s)$ is set of trajectories starting at s)

Proof for continuous tasks (episodic task proof is similar)

$$\begin{split} V^{\pi}(s) &= \sum_{s'} p(s,s') [\ R(s,s') + \gamma \ V^{\pi}(s') \] \quad \text{(fixpoint equation)} \\ &= \sum_{s'} p(s,s') [\ R(s,s') + \gamma \ \sum_{\tau \sim D^{\pi}(s')} \mathbb{P}(\tau) * R(\tau) \] \quad \text{(assumption about } V^{\pi}(s') \text{)} \\ &= \sum_{s'} p(s,s') [\ \sum_{\tau \sim D^{\pi}(s')} \mathbb{P}(\tau) * R(s,s') + \gamma \ \sum_{\tau \sim D^{\pi}(s')} \mathbb{P}(\tau) * R(\tau) \] \quad \text{(because } \left[\sum_{\tau \sim D^{\pi}(s')} \mathbb{P}(\tau) = 1 \right) \\ &= \sum_{s'} p(s,s') \sum_{\tau \sim D^{\pi}(s')} \mathbb{P}(\tau) * \left[(R(s,s') + \gamma * R(\tau)) \right] \\ &= \sum_{s'} \sum_{\tau \sim D^{\pi}(s)} p(s,s') * \mathbb{P}(\tau) * \left[(R(s,s') + \gamma * R(\tau)) \right] \\ &= \sum_{\tau \sim D^{\pi}(s)} \mathbb{P}(\tau) * (R(\tau)) \end{split}$$





Example

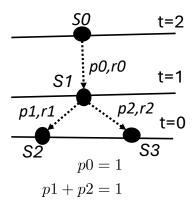
Bellman:
$$V(S0) = \boxed{p0*(r0 + (p1*r1 + p2*r2))}$$

$$= p0*r0 + p0*p1*r1 + p0*p2*r2$$
 Trajectories:
$$V(S0) = \boxed{p0*p1*(r0+r1) + p0*p2*(r0+r2)}$$

$$= p0*p1*r0 + p0*p1*r1 + p0*p2*r0 + p0*p2*r2$$

$$= p0*r0*\underbrace{(p1+p2)}_{=1} + p0*p1*r1 + p0*p2*r2$$

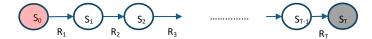
$$= p0*r0 + p0*p1*r1 + p0*p2*r2$$



Unrolled MDP for H = 2, policy π

Intuition: rooted DAG \rightarrow set of paths starting at root Contribution of each edge to expected reward at S0 is distributed over trajectories that contain it

Episode



From a mathematical perspective, multiset of samples can be obtained by jumping randomly between states

Practical view: more economical to follow **paths in the state space**, recording states and rewards, optionally updating V/Q values on the fly

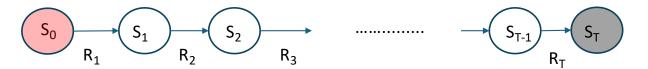
Terminal/absorbing states

- States with no outgoing edges in MDP graph
- (E.g.) win/lose states in two-person games

Episode: <S₀,A₀,R₁,S₁,A₁,R₂,S₂,....,S_{T-1},A_{T-1},R_T,S_T>

- Sequence of state transitions that form a path in the MDP graph
- S_T is terminal state

Monte Carlo Method



Problem Terminal state

- MDP with absorbing/terminal states w/fixed valuations
- Policy is fixed: π

Monte Carlo method

- Sample multiset of episodes
 - At each state, sum discounted rewards from all samples starting at that state
 - · At the end, divide sum by number of episodes starting at that state
- · Intuition: expected number of times path is sampled is proportional to its probability
- Non-boot-strapping method: we are propagating updates to state valuations back from terminal states with fixed valuations

Details

- For given episode, update valuations of all intermediate nodes on path
 - Implementation: propagate (discounted) rewards backwards along path
- Repeated occurrences of node on path
 - First-visit MC vs. every-visit MC

Monte Carlo (no discount): Barto & Sutton

```
Algorithm 1: First-Visit MC Prediction
 Input: policy \pi, positive integer num\_episodes
 Output: value function V \approx v_{\pi}, if num\_episodes is large enough)
 Initialize N(s) = 0 for all s \in \mathcal{S}
 Initialize Returns(s) = 0 for all s \in \mathcal{S}
 for episode\ e \leftarrow 1 to e \leftarrow num\_episode\ do
      Generate, using \pi, an episode S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T
      G \leftarrow 0
      for time step t = T - 1 to t = 0 (of the episode e) do
          G \leftarrow G + R_{t+1}
          if state S_t is not in the sequence S_0, S_1, \ldots, S_{t-1} then
                Returns(S_t) \leftarrow Returns(S_t) + G_t
                N(S_t) \leftarrow N(S_t) + 1
      end
  \quad \mathbf{end} \quad
 V(s) \leftarrow \frac{\text{Returns}(s)}{N(s)} \text{ for all } s \in \mathcal{S}
\underline{\mathbf{retur}}n V
```

$\begin{aligned} & \textbf{Algorithm 2: Every-Visit MC Prediction} \\ & \textbf{Input: policy π, positive integer $num_episodes$} \\ & \textbf{Output: value function V $(\approx v_{\pi}$, if $num_episodes$ is large enough)} \\ & \textbf{Initialize $N(s) = 0$ for all $s \in \mathcal{S}$} \\ & \textbf{Initialize Returns}(s) = 0 \text{ for all } s \in \mathcal{S} \\ & \textbf{for $episode $e \leftarrow 1$ $to $e \leftarrow num_episodes$ \textbf{do}} \\ & \textbf{Generate, using π, an episode $S_0, A_0, R_1, S_1, A_1, R_2 \dots, S_{T-1}, A_{T-1}, R_T$} \\ & \textbf{G} \leftarrow 0 \\ & \textbf{for $time $step $t = T - 1$ $to $t = 0$ (of the $episode e) \textbf{do}} \\ & \textbf{Returns}(S_t) \leftarrow \text{Returns}(S_t) + G_t \\ & \textbf{N}(S_t) \leftarrow \textbf{N}(S_t) + 1 \\ & \textbf{end} \end{aligned}$

Pros and cons of MC vs. TD

TD can learn before knowing terminal state in episode

- TD can learn after every step of episode
- MC must wait till the terminal state is known

TD can learn even if there is no terminal state in episode

- TD can learn even in continuing environments where there are no terminal states
- MC only works for episodic (terminating) environments

Bias/variance tradeoff

- Bias
 - MC+ : Returns from terminating paths: unbiased estimator of V^{π}
 - TD-: TD targets $R_{t+1} + \gamma^* V_i^{\pi}(S_t)$: biased estimator (until convergence)
- Variance
 - MC-: episodes may have long and variable length paths, so high variance
 - TD+: short paths, so lower variance

Lecture 4: Model-Free Prediction Lecture 4: Model-Free Prediction

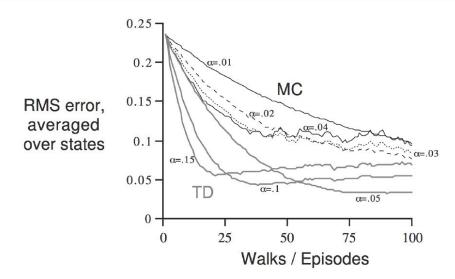
Estimated value 0.4 - 0.2 - 0.2 - 0.2 - 0.8 - 0.6 - 0.4 - 0.2 - 0.

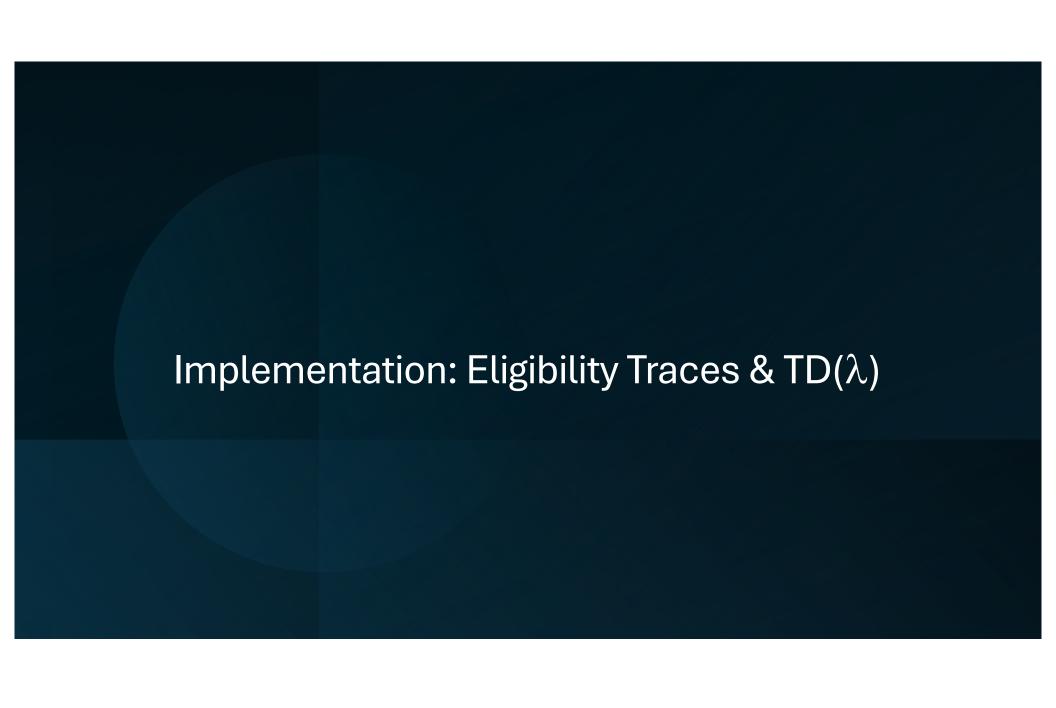
В

Ċ State E

D

Convergence





TD(0) Pseudocode with Episodes (Barto & Sutton)

```
Algorithm 1 Tabular TD(0) for estimating v_{\pi}

Input: Policy \pi to be evaluated Parameters: Learning rate \alpha \in (0, 1]

1: for each episode: do

2: Initialize S

3: while S is not terminal: do

4: Take action A given by \pi(a|S)

5: Observe R, S'

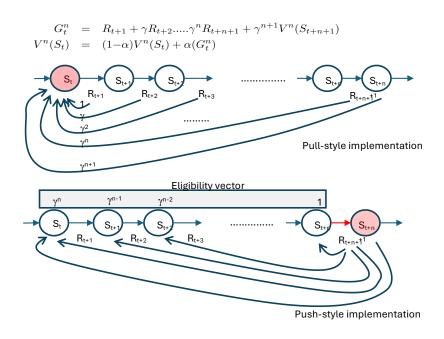
6: Update V(S) \leftarrow V(S) + \alpha[R + \gamma V(S') - V(S)]

7: S \leftarrow S'

8: end while

9: end for
```

Implementing TD(n): push vs. pull



Detail: updates actually performed using TD(0) Errors

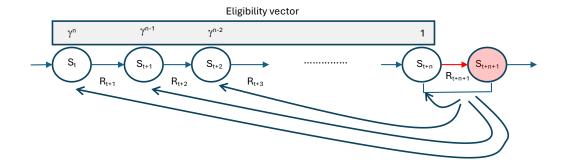
$$G_{t}^{n} = R_{t+1} + \gamma R_{t+2} \dots \gamma^{n} R_{t+n+1} + \gamma^{n+1} V^{n} (S_{t+n+1})$$

$$= \Sigma_{i=0}^{n} (\gamma^{i} R_{t+i+1} + \gamma^{i+1} V^{n} (S_{t+i+1}^{n}) - \gamma^{i} V^{n} (S_{t+i}))$$

$$= \Sigma_{i=0}^{n} \gamma^{i} (R_{t+i+1} + \gamma V^{n} (S_{t+i+1}) - V^{n} (S_{t+i}))$$

$$= \Sigma_{i=0}^{n} \gamma^{i} G_{t+i}^{0}$$

$$V^{n}(S_{t}) = (1-\alpha) V^{n}(S_{t}) + \alpha (G_{t}^{n})$$



$TD(\lambda)$: get the effect of TD(n) without having to pick an n

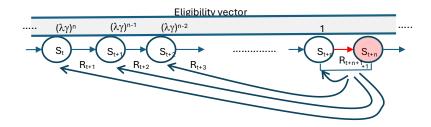
Intuition: rather than drop old states from sliding window, use exponential recencyweighted averaging trick

Sliding window for TD(n):

- Multiply Eligibility vector by $\boldsymbol{\gamma}$
- Eligibility[S_{t+n+1}] \leftarrow 1
- Eligibility[S_t] \leftarrow 0

Sliding window for TD(λ): replacing traces version

- New hyper-parameter λ
- Multiply Eligibility vector by $\gamma\lambda$
- Eligibility[St+n+1] ← 1



Implementation of $TD(\lambda)$

Algorithm 1: $TD(\lambda)$ - estimating state-value function with eligibility traces.

```
import numpy as np
state_values = np.zeros(n_states) # initial guess = 0 value
eligibility = np.zeros(n_states)
lamb = 0.95 # the Lambda weighting factor
state = env.reset() # start the environment, get the initial state
# Run the algorithm for some episodes
for t in range(n_steps):
 # act according to policy
 action = policy(state)
 new_state, reward, done = env.step(action)
 # Update eligibilities
 eligibility *= lamb * gamma
  eligibility[state] += 1.0
 # get the td-error and update every state's value estimate
  # according to their eligibilities.
 td_error = reward + gamma * state_values[new_state] - state_values[state]
  state_values = state_values + alpha * td_error * eligibility
 if done:
    state = env.reset()
  else:
    state = new_state
```

Alistair Ries blog

https://amreis.github.io/ml/reinf-

learn/2017/11/02/reinforcement-learning-eligibility-traces.html

Summary: concepts and keywords

Model-free methods

Deterministic vs. stochastic policies

Offline vs. online methods

Boot-strapping methods: TD(0), TD(n), $TD(\lambda)$, SARSA, Q-learning

Non-boot-strapping methods: Monte Carlo

Bias-variance tradeoff between TD and Monte Carlo

Eligibility traces: implementation

