
CS395T: Foundations of
Machine Learning for
Systems Researchers
Fall 2025

Lecture 7:
Model-free (Sampling) Methods
for MDPs

Problem

In practice, we usually have incomplete
knowledge of environment

• Rewards?
• Probabilities?

How do we do policy optimization when
we have incomplete knowledge of
environment?

?

Sa Sa

Sb Sb

Sc Sc

Sd Sd

Ax

Ay

Ay

Ax

Ay

Ay

Model-free methods

Based on sampling: determine optimal policy
from estimates of rewards and probabilities

Issues
• What are samples?
• How do we learn from a sample?
• When do we learn from samples?
• How to update policy when you get new samples?

Goal is to determine optimal policy and not to
learn full MDP, which is usually impossible

Organization

Background:
• Incremental & exponential recency-weighted averaging of

sequences
O=line method

• Collect samples and post-process them to find V/Q estimates
• Like batching in NN training

Online methods
• Boot-strapping methods: start with initial approximations for

V/Q values and update when you get sample
• Temporal-di,erence (TD) methods: TD(n), TD(l), SARSA, Q-learning

• Non-bootstrapping method: no initial approximation to V/Q
values needed
• Monte Carlo (RL terminology)

Background

Incremental averaging of sequence of values

• Problem: given
• Sequence of (possibly noisy) measurements of some quantity:
• Maintain a running average of measurements:

Target

Harmonic a’s

Error

Non-stationary problems

• Exponential recency-weighted average
• For non-stationary problems, better to give more weight to more recent measurements
• Maintain a weighted average of measurements

Harmonic a’s

10 samples

x x x

weight

sample

x

Stochastic Approximation Theory

• Given: continuous function f(x), non-decreasing in interval (l,h), and f(l) < 0 and f(h) > 0

• Intermediate value theorem: $x*: l < x* < h such that f(x*) = 0

• Iterative method for finding x*
• x1 = any point in interval (l,h)
• if f(x1) < 0 try point to right of x1 otherwise try point to left of x1

• Iterative scheme: xi = xi-1 - a*f(xi-1) where a is some constant > 0

• Often f cannot be measured exactly, and we can only measure g(x) = f(x) + d where d is a zero-mean noise
term

• One solution: measure g(xi) many times and take average
• Problem: you may spend a lot of effort in estimating f(xi) even if xi is far from x*

• Robbins-Monro[1951]: use iterative scheme with adaptive ai > 0

• Stochastic gradient-descent: f is the derivative of loss function
L

l
h

f(x)

x
x*

Sampling Methods

High-level idea

Focus on policy evaluation for policy p, H = ¥: need to solve linear system

 Since p is fixed, simplify notation by dropping p from equations

We do not know P and R, but assume
 P̂ : estimate for P and row-stochastic matrix
 R̂: estimate for R

Compute V̂, an estimate for state valuations, by solving linear system

If P̂ ≈ P and R̂ ≈ R, then V̂ ≈ V

Sa

Ay

p(Sa) = Ax

Ax

First attempt: oEline method

Collect a multiset of samples
• At state Sa, agent takes action p(Sa) and sees what happens

• Observation SARS = <StartState, Action, Observed Reward, Observed State>
• Repeat to obtain multiset of observations starting at various states

• O = [SARS1, SARS2, SARS3,…..,SARSn]

Estimate V by oDline processing of observations
• n(Sx) = number of times agent started in state Sx in O (assume > 0)
• n(Sx,Sy) = number of times agent ended up in state Sy when it started in state Sx
• P̂(Sx,Sy) = !(#$,#&)!(#$) 	 (P̂ is a row-stochastic matrix)

• R̂(Sx,Sy) = observed reward in any Sx ®Sy sample
• Solve linear system to find V̂

Sa Sa

Sb

Ax

Ay
Rb
Ra

Rc

Sc
p(Sa) = Ax

Drawbacks of oEline method

012

1. We do not learn valuations until all
samples have been collected.
• Online methods: pipeline sample collection

and valuation estimation
• Exploitation: use valuations to guide where to

sample

2. Inefficient to jump around between
starting states while collecting samples
• Solution: agent should follow paths in the MDP

graph while collecting samples rather than
jumping around

• Episodes

For now, collect samples, store on disk and
process them in streaming fashion iteratively
until convergence.
Like “batching” in NN training

TD(0): simplest online method

• Recall: oDline processing

• Online updates: maintain two arrays while processing samples
• n(s) = number of times state s has been visited (initialized to 0)
• Ṽ(s)= current estimate of V (initialized arbitrarily)|

• New sample <Sa, Ax, R(Sa,S’), S’> comes in

Sa Sa

S
b

Ax

Ay Rb

Ra

Rc

Sc
p(Sa) = Ax

n

Sa

Sb

Sc

Ṽ

TD-targetTD-error

Intuition: average over
multiset of samples =
weighted average over
sample set, weighted by
frequency

TD(0) program

Sa Sa

S
b

Ax

Ay Rb

Ra

Rc

Sc

p(Sa) = Ax

n

Sa

Sb

Sc

Ṽ

Tabular method: maintain table to map states to values

Comments

Convergence (Balachander, Chatterjee et al.): Given a sequence of one-hop
samples O, the Ṽ values computed by the TD(0) program will converge to the V̂
values in the fixpoint equation
 Caveat: need to iterate over sample sequence O many times like in batching

Convergence: Ṽ values computed by TD(0) program will converge to Vp if each
state is visited unboundedly often in O (called exploring starts).

 In practice: throw away sample after it is processed and regenerate later

Boot-strapping method: Ṽ is initialized arbitrarily
Biased estimator until convergence

TD(1)

• TD(1) two-hop sample: <S0,A0,R1,S1,A1,R2,S2> using policy p

• Update valuations by computing total discounted reward

• Generalize to TD(n): paths with (n-1) hops

• Convergence arguments are similar to TD(0) case

Sa Sa

Sb Sb

Sc Sc

Sd Sd

Ax

Ay

Sa

Sb

Sc

Sd

Ax

Ay

Ay

Ay

Rx

Ry

SARSA

• Maintain table of Q-values rather than V values, using policy p

• Generalize to multiple hops

Sa Sa

Sb Sb

Sc Sc

Sd Sd

Ax

Ay

Sa

Sb

Sc

Sd

Ax

Ay

Ay

Ay

Rx

Ry

Ax

Ay

Q(Sd,Ax)

Q(Sa,Ax)

On-policy and off-policy methods

Terminology
• Target policy: policy you are optimizing
• Behavior policy: policy that generates actions

On-policy methods
• Target policy = Behavior policy
• “Learn about the policy you are following” (alternate policy evaluation and improvement)
• Can be less eVicient than oV-policy methods
• Example: TD(n), SARSA

OD-policy methods
• Behavior policy ¹ Target policy
• “Learn about one policy while behaving according to diVerent policy” (fuse policy evaluation & improvement)
• May find optimal policy faster than on-policy methods
• Examples: Q-learning

Good informal explanation

https://towardsdatascience.com/seven-exploration-strategies-in-reinforcement-learning-you-should-know-8eca7dec503b/

Exploratory policies

Pure exploration: pick an action at random. Does not exploit Q-value estimates.

e-greedy: use exploration e (~5-10%) fraction of time, and exploitation rest of time. For
exploration, choose action at random. Most popular method.

Boltzmann exploration: like e-greedy but uses softmax over current Q-value estimates
to select action for exploration

Pure exploitation: pick action with highest Q-value. May get stuck in local minimum.

Policy network: DNN maps state to distribution over actions, and sampler picks action

Exploration-exploitation tradeo:

Good explanation of oV-policy methods

https://towardsdatascience.com/seven-exploration-strategies-in-reinforcement-learning-you-should-know-8eca7dec503b/
https://towardsdatascience.com/seven-exploration-strategies-in-reinforcement-learning-you-should-know-8eca7dec503b/
https://towardsdatascience.com/seven-exploration-strategies-in-reinforcement-learning-you-should-know-8eca7dec503b/

Q-learning Sa Sa

Sb Sb

Sc Sc

Sd Sd

Ax

Ay

Sa

Sb

Sc

Sd

Ax

Ay
Ay

Ay

• O*-policy method: needs exploratory policy

• Compute Q-values like SARSA but optimize over actions like value iteration

• Generalize to multiple hops

• Convergence of Q-learning

Rx

Ry
Ax

Ay

Q(Sd,Ax)

Q(Sa,Ax)

Q(Sa,Ay)

max

e-greedy,
Boltzmann etc.

Q-learning

https://simplecore.intel.com/ai/wp-content/uploads/sites/69/ProofQlearning.pdf
https://simplecore.intel.com/ai/wp-content/uploads/sites/69/ProofQlearning.pdf
https://simplecore.intel.com/ai/wp-content/uploads/sites/69/ProofQlearning.pdf
https://simplecore.intel.com/ai/wp-content/uploads/sites/69/ProofQlearning.pdf

Monte Carlo Method

Expectations over Trajectories

Si

Sk

Vt

Vt-1

VT-1

VT

S0

Sk

Vt-2

V0

V1

pi,ri
Unrolled MDP DAG for fixed p, rooted at start state S0, H = T

Each edge is labeled with probability and reward
 Sum of probabilities on outgoing edges of node = 1

Trajectory: t ~ p path from root to a leaf

Probability of trajectory t : = product of edge probabilities

Reward of trajectory t : R(t) = sum of rewards on trajectory

Sum of trajectory probabilities = 1

Meaningful to talk about

T

T-1

t

t-1

t-2

1

0

…
…

..
…

…
..

…
…

..

…
…

..
…

…
..

…
…

..

V/Q Valuations as Expectations over Trajectories:
Continuous tasks

s

s’

p(s,s’),R(s,s’)

s
Dp (s)

Dp (s’)

Example

Bellman:

Trajectories:

p0,r0

p2,r2p1,r1

S0

Intuition: rooted DAG ® set of paths starting at root
Contribution of each edge to expected reward at S0 is distributed over trajectories that contain it

t=2

t=1

t=0

Unrolled MDP for H = 2, policy p

S1

S2 S3

Episode

From a mathematical perspective, multiset of samples can be obtained by jumping randomly
between states

Practical view: more economical to follow paths in the state space, recording states and
rewards, optionally updating V/Q values on the fly

Terminal/absorbing states
• States with no outgoing edges in MDP graph
• (E.g.) win/lose states in two-person games

Episode: <S0,A0,R1,S1,A1,R2,S2,….,ST-1,AT-1,RT,ST>
• Sequence of state transitions that form a path in the MDP graph
• ST is terminal state

S0 S1 S2 ST-1 ST…….........
R1 R2 R3 RT

Monte Carlo Method

Problem
• MDP with absorbing/terminal states w/fixed valuations
• Policy is fixed: p

Monte Carlo method
• Sample multiset of episodes

• At each state, sum discounted rewards from all samples starting at that state
• At the end, divide sum by number of episodes starting at that state

• Intuition: expected number of times path is sampled is proportional to its probability
• Non-boot-strapping method: we are propagating updates to state valuations back

from terminal states with fixed valuations
Details

• For given episode, update valuations of all intermediate nodes on path
• Implementation: propagate (discounted) rewards backwards along path

• Repeated occurrences of node on path
• First-visit MC vs. every-visit MC

S0 S1 S2 ST-1 ST…….........
R1 R2 R3 RT

Terminal
state

Monte Carlo
(no discount):

Barto & Sutton

Pros and cons of MC vs. TD

TD can learn before knowing terminal state in episode
• TD can learn after every step of episode
• MC must wait till the terminal state is known

TD can learn even if there is no terminal state in episode
• TD can learn even in continuing environments where there are no terminal states
• MC only works for episodic (terminating) environments

Bias/variance tradeoX
• Bias

• MC+ : Returns from terminating paths: unbiased estimator of Vp

• TD- : TD targets Rt+1 + g*Vi
p(St): biased estimator (until convergence)

• Variance
• MC-: episodes may have long and variable length paths, so high variance
• TD+: short paths, so lower variance

Convergence

Implementation: Eligibility Traces & TD(l)

TD(0) Pseudocode with Episodes (Barto & Sutton)

Implementing TD(n): push vs. pull

St St+1 St+2 St+n St+n

+1

……………
Rt+1 Rt+2 Rt+3 Rt+n+1

1gn-1gn gn-2

Eligibility vector

St St+1 St+2 St+n St+n

+1

…….........
Rt+1 Rt+2 Rt+3 Rt+n+1

1
g
g2

gn

gn+1

………

Pull-style implementation

Push-style implementation

Detail: updates actually performed using TD(0) Errors

St St+1 St+2 St+n St+n+1
……………

Rt+1 Rt+2 Rt+3
Rt+n+1

1gn-1gn gn-2

Eligibility vector

TD(l): get the effect of TD(n) without having to pick an n

Intuition: rather than drop old states from sliding window, use exponential recency-
weighted averaging trick

St St+1 St+2 St+n St+n

+1

……………
Rt+1 Rt+2 Rt+3

Rt+n+1

1(lg)n-1(lg)n (lg)n-2

Eligibility vector
…..…..

Sliding window for TD(n):
- Multiply Eligibility vector by g
- Eligibility[St+n+1] ß 1
- Eligibility[St] ß 0

Sliding window for TD(l): replacing traces version
- New hyper-parameter l
- Multiply Eligibility vector by gl
- Eligibility[St+n+1] ß 1

Alistair Ries blog:
https://amreis.github.io/ml/reinf-
learn/2017/11/02/reinforcement-learning-eligibility-traces.html

Implementation of TD(l)

https://amreis.github.io/ml/reinf-learn/2017/11/02/reinforcement-learning-eligibility-traces.html
https://amreis.github.io/ml/reinf-learn/2017/11/02/reinforcement-learning-eligibility-traces.html
https://amreis.github.io/ml/reinf-learn/2017/11/02/reinforcement-learning-eligibility-traces.html
https://amreis.github.io/ml/reinf-learn/2017/11/02/reinforcement-learning-eligibility-traces.html
https://amreis.github.io/ml/reinf-learn/2017/11/02/reinforcement-learning-eligibility-traces.html
https://amreis.github.io/ml/reinf-learn/2017/11/02/reinforcement-learning-eligibility-traces.html
https://amreis.github.io/ml/reinf-learn/2017/11/02/reinforcement-learning-eligibility-traces.html
https://amreis.github.io/ml/reinf-learn/2017/11/02/reinforcement-learning-eligibility-traces.html
https://amreis.github.io/ml/reinf-learn/2017/11/02/reinforcement-learning-eligibility-traces.html
https://amreis.github.io/ml/reinf-learn/2017/11/02/reinforcement-learning-eligibility-traces.html

Summary: concepts and keywords

Model-free methods

Deterministic vs. stochastic policies

Offline vs. online methods

Boot-strapping methods: TD(0), TD(n), TD(l), SARSA, Q-learning

Non-boot-strapping methods: Monte Carlo

Bias-variance tradeoff between TD and Monte Carlo

Eligibility traces: implementation

